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We synthesized C8-vinylpyrene-substituted 2’-deoxyguanosine PG and studied the photoregulated
reversible E-Z isomerization. When E-isomer was irradiated with visible light (>420 nm), E- to Z-isomer-
ization took place very rapidly, while upon irradiation with UV-light (~365 nm), Z-isomer was converted
to E-isomer. When Z-isomer was illuminated with 365-400 nm light, no fluorescence was observed,
while E-isomer showed a very strong fluorescence emission, indicating that Y*¥G could be a useful fluo-
rescence switching molecule.

© 2009 Elsevier Ltd. All rights reserved.

The design and synthesis of photoswitching molecules have at-
tracted currently much attention for devising molecular devices
such as molecular switches and sensors.! Particularly, fluorescence
switch is of special importance due to its high sensitivity and selec-
tivity for the application to optical devices, fluorometric assay of
biomolecules as well as bioimaging.?2 We now wish to report a un-
ique ‘on-off’ fluorescence switching of vinylpyrene-substituted 2’-
deoxyguanosine, which would find widespread application as a
photochromic nucleobase for fluorometric sensing, bioimaging,
optical devices and photoregulation of nucleic acid structures
(Fig. 1).

Our long-term interest in designing base-discriminating fluo-
rescent (BDF)? nucleosides has led us to develop a novel vinylpy-
rene-substituted guanosine derivative Y™G, which reversibly
photoisomerized on illuminating at / > 350 nm where no UV dam-
age occurred on DNA. This molecule showed a fluorescence emis-
sion that can be ‘on-off modulated with high sensitivity owing
to its rapid photoisomerization between fluorescent (E-form) and
non-fluorescent states (Z-form). V™G can therefore be used as a
fluorescence switching molecule.

We have designed the photoswitchable nucleoside, C8-vinylpy-
rene-substituted 2'-deoxyguanosine 1 (Y™G). Pyrene was chosen
because its absorption maximum lies around 350 nm where no
natural nucleotides absorb light. The photochromic compound 1
was synthesized according to Scheme 1. Thus, 8-bromo-2’-deoxy-
guanosine 3 was treated with N,N-dimethylformamide diethylac-
etal in methanol at 60 °C to afford N?-protected nucleoside 4,
which was then converted to C8-vinyl derivative 5 under Stille
coupling conditions.* A second round of Pd(0)-mediated coupling
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of nucleoside 5 with 1-bromopyrene in the presence of sodium
acetate gave compound 6 in a moderate yield, which upon treat-
ment with NH,OH afforded the desired photochromic nucleoside
1. During isolation process under room light, initially formed Z-iso-
mer was gradually photoisomerized to give a mixture of E- and
Z-isomers. Both E- and Z-isomers were separated in a pure form
using HPLC with 100% methanol as an eluting solvent.’

Next, we examined the photoisomerization in methanol. Upon
illumination of E-Y™¥G with visible light (/. > 420 nm), a photosta-
tionary state containing Z-form in a major quantity (92%) was ob-
tained as determined by HPLC. E-form was regenerated by
irradiation of Z-form with UV light (~365 nm), and it was obtained
in 82% yield. The E/Z ratios were calculated at a photostationary
state by measuring HPLC peak area as detected at the wavelength
of isosbestic point (368 nm). These results indicate that highly
reversible E to Z photoisomerization of Y?¥G can be accomplished
by illumination at 365 nm and 420 nm (Fig. 2).° Thus, the E-Z
isomerization of photoresponsive V™G was conducted by 420 nm
light separated from a 100 W Xenon lamp by a filter solution and
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Figure 1. Fluorescence ‘on-off' switching induced by E-Z photoisomerization of
photochromic base YPG.
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Scheme 1. Synthesis of photochromic nucleoside Y*YG. Reagent and conditions: (a) DMF diethylacetal, methanol, 60 °C, 3 h; (b) Pd(PPhs)4, Sn(CHCH,),, EtsN, DMF, 60 °C,
12 h; (c) 1-bromopyrene, Pd(PPhs),, CH3COONa, DMF, 80 °C, 12 h; (d) NH,OH/methanol, rt, 8 h.
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Figure 2. (a) Absorption spectra of E- and Z-VPyG. Spectral change for photoirradiation of (b) Z- to E-isomer and (c) E to Z-isomer. Time course for the photoisomerization of
(d) Z to E and (e) E to Z. (f) Switching cycles between E- and Z-isomer. It was monitored at 410 nm UV-vis absorbance.

by 365 nm light from a UV-transilluminator. Photoirradiation of at 405 nm with a blue shift of ca. 40 nm and in an increase in the
E-YPYG at 420 nm resulted in a rapid decrease in the absorption absorption at 280 nm with a blue shift of ca. 2 nm, indicating a
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Figure 3. (a) Visible color of Z- and E-isomers in methanol. (b) Fluorescence image of E- and Z-isomers illuminated at 365 nm. (c) Fluorescence spectra and fluorescence
excitation spectra of E- and Z-isomers. (d) Fluorescence intensity of E- and Z-isomers as determined by fluorescence plate reader.

quantitative E to Z photoisomerization (Fig. 2b). On the other hand,
when Z-Y™G was illuminated at 365 nm, the absorbance of the
peak at 280 nm decreased with a red shift of 2 nm, while the inten-
sity of the peak at 365 nm increased with a red shift of ca. 40 nm
(Fig. 2¢). In the case of Z to E photoisomerization, the photostation-
ary state was attained within 60 s (Fig. 2e). To reach the photosta-
tionary state from E-isomer, longer irradiation time (>170 s) was
required (Fig. 2d). Such reversible photoisomerization was re-
peated more than 10 times without any side reaction (Fig. 2f).
Interestingly, we observed a visible yellow color and bright bluish
green fluorescent for E-isomer, while no visible color and no fluo-
rescence were observed for Z-isomer (Fig. 3a and b). We examined
the fluorescence behavior of photochromic V™G as a photoswitch-
ing fluorescent molecule in more detail. Interestingly, when ex-
cited in the 365-400 nm region, Z-isomer 2 showed almost no
fluorescence, whereas E-isomer 1 showed a strong fluorescence
with an emission maximum at 490 nm (Fig. 3c). Very weak fluores-
cence at 490 nm observed for Z-isomer (Fig. 3c) was ascribable to
the fluorescence of a small amount of E-isomer formed during fluo-
rescence measurement. This was further confirmed by the fluores-
cence excitation spectra of the low intensity fluorescence peak at
490 nm, which was identical with that of the fluorescence excita-
tion spectra of E-isomer, not for the Z-isomer. We also measured
the fluorescence intensity of E- and Z-isomers by using fluores-
cence plate reader within a time scale of 0.1 s in methanol (excited
at 355 nm, detected at 535 nm) (Fig. 3d). The data clearly indicated
that Z-isomer is non-fluorescent. The fluorescence lifetime of E-iso-
mer was also measured in methanol at room temperature. These
photophysical properties of E- and Z-Y™G are summarized in Table
1.

Thus, we concluded that E-isomer is in the fluorescence ‘on’
state, while Z-isomer is in the “off” state. The lack of fluorescence
emission for Z-isomer is probably due to the strong interaction of
photoexcited pyrene moiety with neighboring electron-donating
guanine base. We observed a good reversibility of E-Z photoiso-
merization without any side reaction (Fig. S1).

Table 1

Photophysical data for E- and Z- V™G in methanol

Isomer €360 €410 Jmax (nm) OF 7" (ns)
E 22,200 38,600 489 0.43 (Jex =410 nm) 23

V4 30,800 3800 - ~0 (Jex =410 nm) —

2 A single component.

In conclusion, we have successfully developed photochromic
C8-vinylpyrene-substituted 2'-deoxyguanosine (Y™G) as a photos-
witching molecule® The nucleoside showed a very rapid and
reversible photoisomerization without any side reaction. We have
also demonstrated that E-isomer emits a strong fluorescence, while
Z-isomer does not. Therefore, due to the drastic fluorescence
change, the photochromic guanine base Y?YG might be a very useful
fluorescence switching molecule.
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